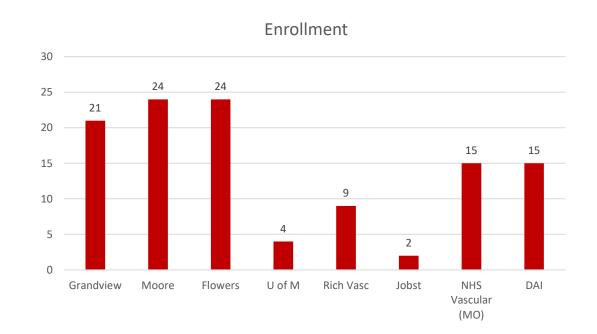
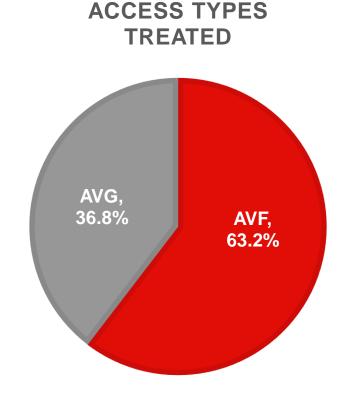


FLEX AV Registry 12-month Results

FLEX-AV Registry


- Study Design: Multi-Center, Single-Arm, Prospective Study
- **Study Population:** Patients with AVF/AVG stenosis, eligible for FLEX/Angioplasty treatment.
- Enrollment: 114
- Sites: 8 Sites


• Follow-Up: Phone call to the patient and/or dialysis center at 6, 9, and 12 months.

- 114 patients treated
- Total number of lesions treated, n= 148
- 8 clinical sites

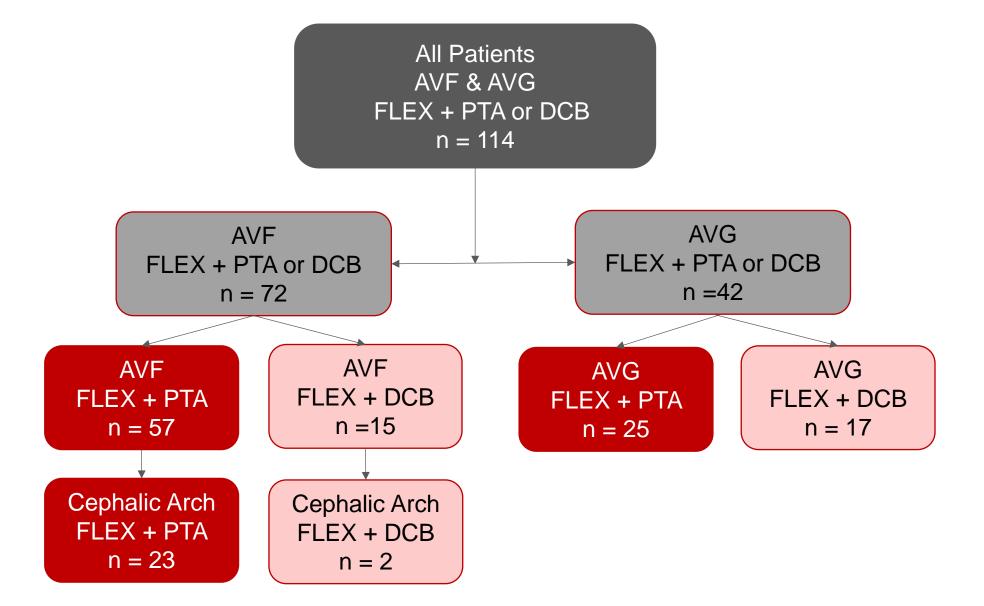
Patient Demographics & Characteristics: Real-World, No FLEX "Cherry-picking"

Variable	114 Subjects
Age (years)	63.3 ± 12.7 (114)
	31.0-88.0
Gender	
Female	61/114 (53.5%)
Male	53/114 (46.5%)
Race	
American Indian or Alaska	2/114 (1.8%)
Native	
Asian	1/114 (0.9%)
Black or African American	<mark>75/114 (65.8%)</mark>
White	36/114 (31.6%)
Smoking History	
Current	17/114 (14.9%)
Never	60/114 (52.6%)
Past	37/114 (32.5%)

114 patients, 8 sites, All-comers Registry					
Prior AV Access Interventions	4.9 ± 5.8; highest number: 29				
Cephalic Arch %	22%				
Target Lesion Length (mm)	21 ± 25				
Maximum PTA Balloon Pressure needed (atms)	15.2 ± 5.9				
No limitations on Lesion Length					
No limitations on Prior Interventions					

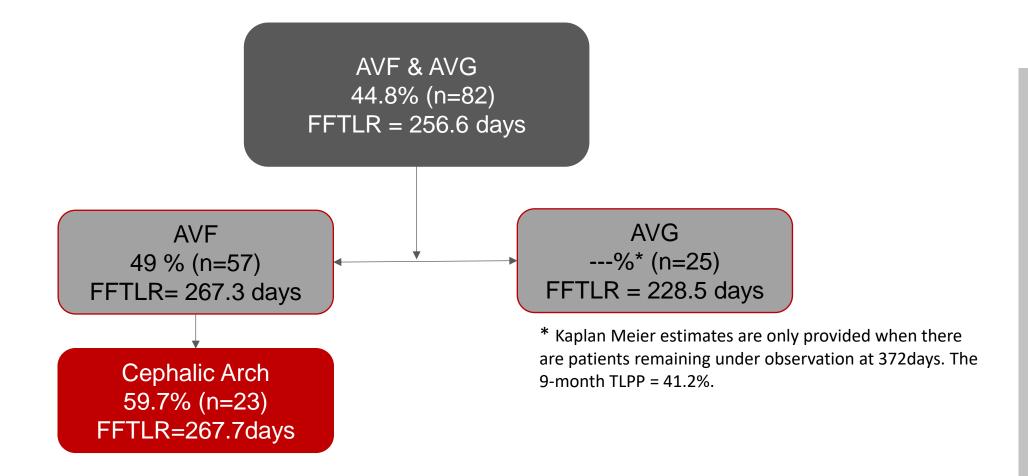
Functional Primary Patency 12 months

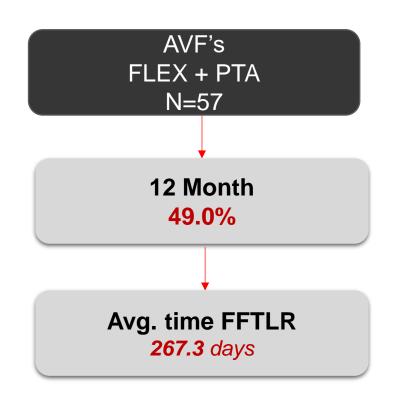
Freedom from Target Lesion Reintervention

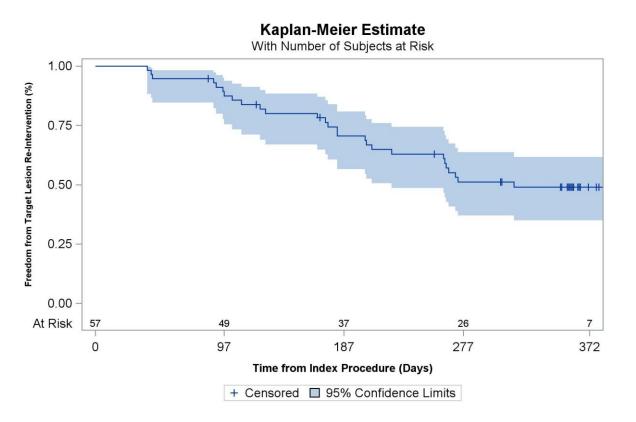


12-month Target Lesion Primary Patency Analysis

- 112/114 target lesions were considered for the Kaplan-Meier estimate
 - 2 subjects did not contribute to any follow-up analysis
- Patients analyzed in following cohorts
 - AVF with PTA alone
 - AVG with PTA alone
 - Cephalic Arch target lesions with PTA alone
- Statistical Analysis
 - √ Functional Patency estimation via Kaplan-Meier analysis at the close of the 6-month FU visit
 - ✓ Freedom from TLR (time) was determined using restricted mean survival time analysis (RMST) restricted to 270 days


Patient Cohorts

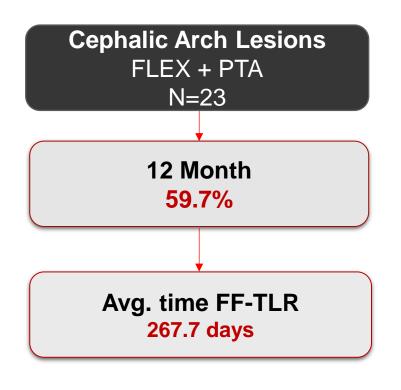


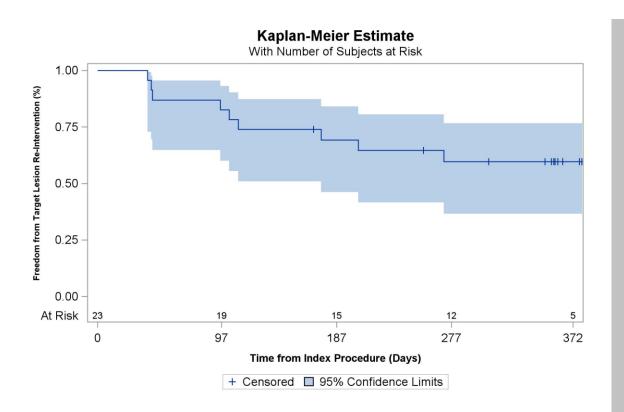

12-month Target Lesion Primary Patency FLEX + PTA

12-month Target Lesion Primary Patency FLEX+PTA in AVF

Published Results	FLEX Registry FLEX + PTA	Liao, et al ¹	Rajan, et al ²	Ng, et al ³	Hu, et al ⁴
12-month TLPP AVF	49.0% (n=34)	31.5% (n= 273)*	26% (n = 53)	0% - 21.2% (n=143)*	47.2% (n=341)*

^{*}restricted to AVF studies only


¹Liao M-T, Chen M-K, Hsieh M-Y, Yeh N-L, Chien K-L, Lin C-C, et al. Drug-coated balloon versus conventional balloon angioplasty of hemodialysis arteriovenous fistula or graft: A systematic review and meta-analysis of randomized controlled trials. PLOS One; 2020 15(4).


² Rajan D., et al., Dysfunctional Autogenous Hemodialysis Fistulas: Outcomes after Angioplasty – Are There Clinical Predictors of Patency? Radiology. Sept 2004.

³ Ng B, Fugger M, Onakpoya IJ, et al. Covered stents versus balloon angioplasty for failure of arteriovenous access: a systematic review and meta-analysis. BMJ Open 2021;11

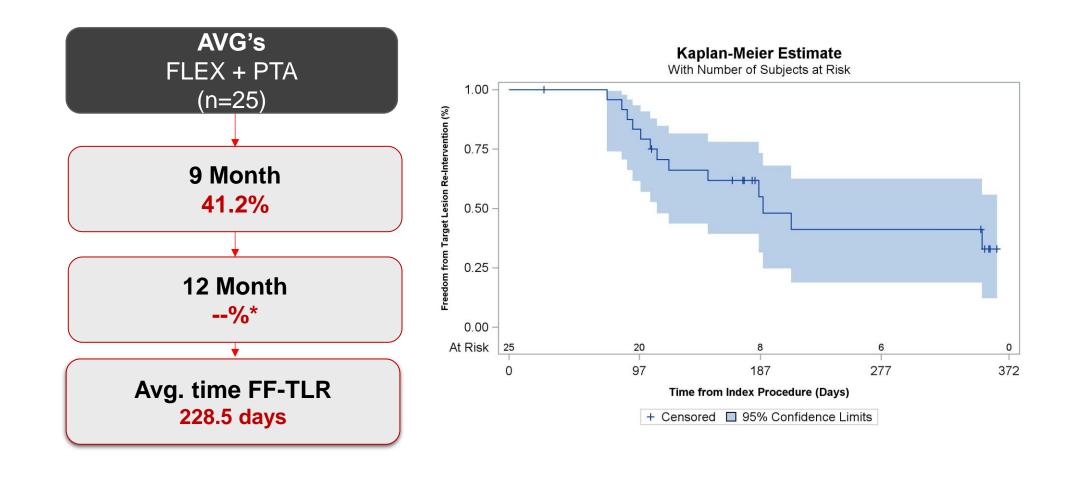
⁴ Hu H, Tan Q, Wang J, Liu Y, Yang Y, Zhao J. Drug-coated balloon angioplasty for failing haemodialysis access: meta-analysis of randomized clinical trials. Br J Surg. 2021 Nov 11;108(11):1293-1303.

12-month Target Lesion Primary Patency FLEX + PTA in Cephalic Arch

12-month TLPP Literature Comparisons PTA in Cephalic Arch Results

Published Results	FLEX Registry FLEX + PTA	D'Cruz, et al ^{1,5}	Tng et al. ²	Vasanthamohanm, et al. ³	Miller, et al. ⁴
12-month Functional Patency Cephalic Arch	59.7% (n=14)	9.5%* (n=146) *Pooled multistudies (0-39.6%)	33.9% (n=59)	0%-23% (n= 13-24) * multi-studies small sample sizes	11% (N=50)* * Historical controls

¹ D'Cruz RT, Leong SW, Syn N, et al. Endovascular treatment of cephalic arch stenosis in brachiocephalic arteriovenous fistulas: a systematic review and meta-analysis. J Vasc Access 2019; 20: 345.


²Tng RK, et al., Treatment of cephalic arch stenosis in dysfunctional arteriovenous fistulas with paclitaxel-coated versus conventional balloon angioplasty, CVIR Endovascular, (2021) f:80.

³ Vasanthamohanm, L., et al. The Management of Cephalic Arch Stenosis in Arteriovenous Fistulas for Hemodialysis: A Systematic ReviewCardiovasc Intervent Radiol (2015) 38:1179–1185

⁴ Miller GA, Preddie DC, Savransky Y, Spergel LM. Use of the Viabahn stent graft for the treatment of recurrent cephalic arch stenosis in hemodialysis accesses. J Vasc Surg. 2018.

⁵ Beathard et al., End Points for Interventional Studies for AV Access, Clin J Am Soc Nephrol 13: 501–512, March 2018.

12-Month Functional Patency FLEX + PTA in AVG

^{*}Kaplan-Meier estimates are only provided when there are patients remaining under observation at 372

12-month TLPP Literature Comparisons PTA in AVG Results

Published Results for PTA of AVGs	FLEX Registry FLEX + PTA	Yang, et al ¹	Liao, et al. ²	Ng, et al. ³
12-month Functional Patency AVG	%* (n=25)	7.8% (N=49)	9% (n=22)	0% - 24.8% (n=339) *Meta-analysis of RCTs of covered stents – AVGs

9 Month 41.2% (n=18)

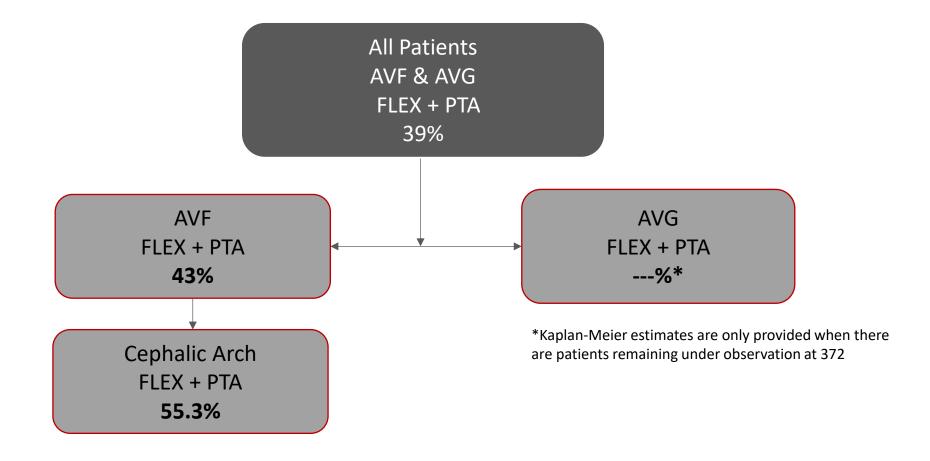
*Kaplan-Meier estimates are only provided when there are patients remaining under observation at 372

¹ Yang HT, Yu SY, Su TW, Kao TC, Hsieh HC, Ko PJ. A prospective randomized study of stent graft placement after balloon angioplasty versus balloon angioplasty alone for the treatment of hemodialysis patients with prosthetic graft outflow stenosis. J Vasc Surg. 2018 Aug;68(2):546-553.

² Liao M-T, Chen M-K, Hsieh M-Y, Yeh N-L, Chien K-L, Lin C-C, et al. Drug-coated balloon versus conventional balloon angioplasty of hemodialysis arteriovenous fistula or graft: A systematic review and meta-analysis of randomized controlled trials. PLOS One; 2020 15(4).

³Ng B, Fugger M, Onakpoya IJ, et al. Covered stents versus balloon angioplasty for failure of arteriovenous access: a systematic review and meta-analysis. BMJ Open 2021;11

Procedure Complications Reported


- No Serious Adverse Events
- 4.3% Procedure complications reported during the study

Classificati on	Reported Complicati on	Number	Reported Cause	Treatment	FLEX %	JVIR Quality Improvement Guideline ¹ Thresholds
Major	None	0	N/A	N/A	0%	2% (AVF) 7% (AVG)
Minor	Dissection, Grade B,C	4	Angioplasty	1 – No treatment 3 – Balloon inflation	4.3%	8% (AVF) 4% (AVG)
	Balloon burst	1	Balloon Rupture	Embolectomy		

¹ Daruiushnia, S. et al. Quality Improvement Guidelines for Percutaneous Image-Guided Management of the Thrombosed or Dysfunctional Dialysis Circuit, J VascInterv Radiol 2016;27:1518–1530

Access Circuit Primary Patency at 12 months

Comparison ACPP

Published Results for ACPP	FLEX Registry FLEX + PTA	Dolmatch 2023 ¹	Holden 2022 ²	Fong 2021 ³	Haskel 2016 ⁴
12-month ACPP in AVF	43%	17.7% (n=138)	32.4% (n=160)	29.8%	n/a
12-month ACPP in AVG	%*	n/a	n/a	(n=424)	11% (n=132)

Conclusions

- The FLEX AV Registry 12-month outcomes demonstrate sustained patency across most subjects and impressive results specifically in the Cephalic Arch.
- Result highlights for FLEX + PTA:
 - 49% patency at 12 months
 - 60% patency at 12 months
 - 41.2% patency for all AVG patients at 9 months
 - AVG Days, Freedom from TLR

```
    All (AVF & AVGs) Flex + PTA
    All AVF, FLEX + PTA
    All CA + PTA
    All CA, Flex + PTA
    All AVG, Flex + PTA
    267.3 (8.9 months)
    267.7 (8.9 months)
    228.5 (7.6 months)
```

- Lower PTA max inflation pressures 15.2 ATM
- No observed SAEs