

BAPTIST HEALTH SOUTH FLORIDA

FLEX Vessel Prep[™] System: Acute Results in Complex Vessel Anatomy

Constantino Peña, MD

Medical Director of Vascular Imaging

Miami Cardiac and Vascular Institute

Miami, Florida

Faculty Disclosures

Constantino Pena MD, FAHA, FSCCT, FSIR:

- Consultant Philips Medical; Avanos; Cordis
- Scientific Advisory Boards Boston Scientific; VentureMed; Surmodics
- Investor: Cagent Medical; Integrity Spine
- Speaker: Abbott Medical; BD; Cook Medical; Sirtex; Penumbra

Brand names are included in this presentation for participant clarification purposes only. No product promotion should be inferred.

Vessel Preparation

- Modulate a vessel in order to allow dilatation to its final diameter for definitive therapy
- Modify plaque to improve vessel compliance and reduce dissections
- Potentially improve diffusion of DCB therapy
- Goal: safe dilation of vessels to improve outcomes

Flex Vessel Prep[™] System – Why FLEX First?

Optimizes revascularization of *long, complex lesions with micro-incisions*

- Controlled plaque modification in mixed morphology and asymmetrical lesions
- Consistent, long, micro-incisions prepare vessels prior to DCB or other therapies
- Create pathways to enhance and potentially facilitate drug access to diseased vessels

Safe

- Predictable, controlled-depth micro-incisions -10/1000"
- Minimizes risk of dissection, perforation, and other complications

Easy to use

- Simple design treats long, complex lesions
- Retrograde pull-back with minimal user variation
- ➢ No vessel sizing needed

Cost efficient

- ➢ No capital equipment−
- Only one or two catheters (shaft length)
- ➢ Quick over-the-wire set-up, and use −

Designed for "Faster-Easier-Safer" Vessel Prep

- 6Fr; .014" or .018" guidewire (OTW)
- 2 working lengths 40cm & 120cm (US and OUS)
- Reinforced braided shaft for enhanced deliverability & torque performance
- Atraumatic tip for enhanced trackability and crossing profile
- For use in the femoral and popliteal arteries and AV fistulas and grafts
- Treatment element profile 2mm to 7mm

FLEX Vessel Prep[™] System

FLEX Micro-Incisions

Precise, controlled-depth in real-world plaque morphology

SFA - FLEX + In.PACT Admiral (Paclitaxel)

CBSET Cadaver Study – Coated Drug in Micro-Incisions

S3400N 10.0kV x100 BSE3D 7/16/2019 12:35

SET

3400N 10.0kV x100 BSE3D 7/16/2019 11:39

FLEX Vessel Prep[™] System Acute Results in Complex Vessel Anatomy

- Multi-center, retrospective review
- 185 real-world cases in long (20cm+), moderate-severe calcific (69%) lesions
- CTOs (≥ 8cm) 100% baseline stenosis
- Included only lesions prepped with the FLEX VP[™] System prior to DCB or POBA
- Angiograms collected at baseline, post FLEX, and post procedure

	Mean (Range), N (%)
Number of Cases	185
Age	72 (38 – 92)
Male	111 (60%)
Vessel Diameter (mm)	5 (1 – 10)
Lesion Length (cm)	20.8 (10 – 41)
Moderate Calcification	56 (30%)
Severe Calcification	73 (39%)
Baseline Stenosis, %	100
Post FLEX Luminal Gain, %	34 (0 – 100)
Angioplasty Effacement Pressure (atm)	4 (2 – 10)
No Dissections	177 (96%)
Type A Dissections	6 (3%)
Type B Dissections	2 (1%)
Emboli, Perforations, Flow Limiting Dissections	0 (0%)
Provisional Stenting	52 (28%)
Residual Stenosis, %	10 (0 – 80)

Key Results

Case Studies

Case Study 1

- 71-year-old male
- Rutherford Class 5
- 3 FLEX Passes
- POBA + DCB

Procedure Details		
Lesion Length	155 mm	
Pre-Procedure Stenosis	100%	
Post FLEX Stenosis	30%	
Luminal Gain Post FLEX	70%	
Post Procedure Stenosis	0%	

Case Study 2

- 72-year-old female
- Rutherford Class 3
- 4 FLEX Passes
- POBA + DCB

Procedure Details		
Lesion Length	410 mm	
Pre-Procedure Stenosis	100%	
Post FLEX Stenosis	50%	
Luminal Gain Post FLEX	50%	
Post Procedure Stenosis	10%	

Conclusions

- FLEX VP System effectively modified real-world plaque, including CTOs in the SFA/popliteal arteries.
- FLEX VP System is a safe and appears to limit potential risks of dissection and perforation in CTOs.
- Post-FLEX sub-nominal inflation pressures demonstrate improved vessel compliance.
- Further studies are warranted to confirm reduction of long-term reinterventions rates.

