Vessel Preparation of Femoropopliteal Lesions Prior to Drug-Coated Balloon Angioplasty with the

Purpose

Vessel preparation (VP) prior to the implementation of drug-coate balloons (DCB) is increasing in clinical importance. VP has the pote to improve acute results of DCB by decreasing dissections and limit stenting. VP should also provide an optimal environment for drugpotentially leading to improved long-term outcomes.

Methods

FLEX Dynamic Scoring Catheter, a non-balloon-based scoring device studied as a VP device prior to DCB. Retrospective review of 263 r cases (50 institutes, 74 physicians) was performed.

Pre-dilation using plain-old-balloon-angioplasty (POBA) was performed at the discretion of the operator. Dissection, luminal gain, and opening balloon pressures (lowest pressure required to fully efface the lesion) were the focus of this review.

Vessel Characteristics	
Average Lesion Length	135 mm (2-410 I
Average Vessel Diameter	5.5 mm (2-8 m
Average Baseline Stenosis	91.7% (50-100
% CTO	45%

FLEX Dynamic Scoring Catheter

Nicolas Mouawad, MD - Chief and Medical Director, Vascular and Endovascular Surgery, McLaren Bay Region Richard Kovach, MD - Deborah Heart and Lung Center Daniel Leung, MD - Christiana Care Health Services

ed- ential iting -uptake	Results		
	Post FLEX		
	Average Number of FLEX Passes		
	Residual Stenosis		
	Luminal Gain		
	Adjunctive Therapy with DC		
ce, was real-world	Average Opening Pressure		
	Maximum Pressure		
	Residual Stenosis		
	Procedural Complications		
	Grade A Dissections		
	Grade B Dissections		

Bail-out stenting was not required. No flow-limiting dissections, perforations, or emboli occurred.

Technology Overview

One-Size-Fits-All Device / 1 SKU Inventory 6 Fr / .014 and .018 Guidewire Compatible 40 cm and 120 cm Working Length Engineered for continuous parallel micro-incisions by 3 Atherotomes FLEX predilates the stenosis \rightarrow Skids apply a constant pressure (1 atm) <u>Controlled depth</u> micro-incisions (Atherotome Height 0.01") Rotationally controlled, provides the ability to create multiple scores

OCT Image (left) and Histology (right) of a Human Cadaver SFA FLEX Micro-Incision

Vessel Diameter: 5 mm Lesion Length: 250 mm Calcification: Severe Pre Stenosis: 100%

Post FLEX Recanalization 3 FLEX Passes Post FLEX Alone Luminal Gain: 30%

FLEX Dynamic Scoring Catheter is utilized by interventionalists as VP prior to DCB. A significant luminal gain was achieved. Observed adequate vessel compliance measured by low balloon opening pressures. Low rates of dissection were observed, suggesting VP can optimize results compared to angioplasty alone. Further studies are warranted to determine longer-term outcomes and demonstration of improving drug-uptake.

Case Study

Final Result Treated with a DCB Inflation Time: 3 min DCB Opening Pressure: 5 atm Residual Stenosis: 5%

Conclusion